

Anti-CD47 MoAbs in AML and MDS

David A. Sallman, MD Associate Member Myeloid Section Head Department of Malignant Hematology Moffitt Cancer Center david.sallman@moffitt.org

President: Pier Luigi Zinzani Co-President: Michele Cavo

Bologna, Royal Hotel Carlton January 15-17, 2024

BOLOGNA, ROYAL HOTEL CARLTON

OFMOERSTER ST RE SCIENZE MEDICINE TO CO		O DI ORSOLA SERVIZIO SANITARIO REGIONALE MILLIA-COMAGNA Allenda Ospedaliero - Universitaria di Bologna	Disclos	sures of Dr. Sallm	nan	Ne	
				Presider Co-Pres Bolog Royal Janu	t: Pier Luigi Zinzani ident: Michele Cavo gna, Hotel Carlton Lary 15-17,	2024	gy
Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Jasper Therapeutics						х	
Magenta Therapeutics						x	
NKARTA						Х	
Novartis						x	
Orbital Therapeutics						x	
Shattuck Labs						х	
Servier						x	
Syndax						x	
Syros						x	
Aprea	x						
Jazz	x						

Structure and Function of CD47 and SIRPα

- CD47 is a widely expressed transmembrane protein and serves as the ligand for signal regulatory protein alpha (SIRPα)
- SIRPα is expressed on phagocytic cells including magrophages and dendritic cells
- CD47/SIRPα binding initiates a signal transduction cascade resulting in SHP 1/2 activation and consequent inhibition of phagocytosis
- CD47 helps maintain immunotolerance by non-malignant cells under physiological conditions
- CD47 Blockade can abrogate this suppression signal

Innate Immune System Evasion via CD47

- CD47 is a "do not eat me" signal on cancers that enables macrophage immune evasion
- CD47 is the dominant macrophage checkpoint overexpressed on most cancers
- In AML, CD47 expression is overexpressed on LSC/bulk AML vs normal HSC/MPP
- CD47 leads to a strong fitness advantage in AML LSCs
- Increased CD47 expression predicts worse prognosis in AML patients
- In MDS, increased CD47 expression associated with RAEB disease and higher risk by IPSS

Majeti, Chao et al., Cell 2009; Jaiswal et al., Cell 2009

Therapeutic Impact of CD47/SIRPα Blockade in Cancer

Preclinical efficacy of CD47 and AML

Majeti, Chao et al., Cell 2009;

Combination Therapy with CD47 Targeted Therapy

Chao et al., Cell 2010; Sikic et al., JCO 2019; Feng et al., ASH 2019

Magrolimab Synergizes with Azacitidine to Induce Remissions in AML Xenograft Models

- Azacitidine (AZA) induces pro-phagocytic "eat me" signals like calreticulin on cancer cells
- Increased eat me signals induced by azacitidine synergizes with CD47 blockade of the "don't eat me" signal leading to enhanced phagocytosis

Magrolimab (Formerly 5F9) is a First-in-class Macrophage Immune Checkpoint Inhibitor Targeting CD47

Control mAb: No Phagocytosis

Anti-CD47 mAb: Phagocytosis

Macrophages Cancer cells

- Magrolimab is an IgG4 anti-CD47 monoclonal antibody being investigated in multiple cancers
- Magrolimab was well tolerated in a UK Phase 1 trial in r/r AML with no MTD reached (Vyas et al., EHA abs 2018)

5F9005 Study Design: Magrolimab in Combination With AZA in MDS and Anti-Dejectives

- 1. Safety of magrolimab alone or with AZA
- 2. Efficacy of magrolimab + AZA in untreated AML/MDS

Secondary objectives

- 1. Pharmacokinetics, pharmacodynamics, and immunogenicity of 5F9
- 2. Additional measures of efficacy (DOR, PFS, OS)

Exploratory objective

To assess CD47 receptor occupancy, markers of immune cell activity, and molecular profiling in AML/MDS

- A magrolimab priming dose (1 mg/kg) and dose ramp-up was utilized to mitigate on-target anemia
- Data from the expansion cohort is presented

*Dose ramp-up from 1 mg/kg to 30 mg/kg by week 2, then 30 mg/kg maintenance dosing or 30 mg/kg Q2W starting Cycle 3+. IPSS-R: Revised International Prognostic Scoring System.

On-Target Anemia Is a Pharmacodynamic Effect and Mitigated with a Magrolimab Priming and Maintenance Dosing Regimen

- An initial priming dose mitigated on-target anemia by CD47 blockade, resulting in a transient hemoglobin drop.
- Median hemoglobin change from baseline was -0.7 g/dL (range -3.1 to +2.4) at first post-treatment visit.
- 37 (38.9%) patients were transfusion dependent at baseline; 13 (35.1%) of these converted to RBC transfusion independence.

Magrolimab + AZA Induces High Response Rates in HR-MDS

TABLE 3. Efficacy Outcomes

Outcome	All (N = 95°)	TP53-wt MDS (N = 61)	<i>TP53</i> -mut MDS (N = 25)			
OR rate, % ^b	74.7	78.7	68.0		170 -	
CR, % (95% CI)	32.6 (23.4 to 43.0)	31.1 (19.9 to 44.3)	40.0 (21.1 to 61.3)	(%	150 -	Mutant (N = 23)
mCR, %	31.6	37.7	20.0	ne (130 - 110 -	Wild-type (N = 55) Missing (N = 8)
PR, %	0	0	0	seli	90 -	
SD with HI, %	10.5	9.8	8.0	n Ba	70 - 50 -	
Duration of CR, months, median (95% CI)	11.1 (7.6 to 13.4)	12.9 (8.0 to NR)	7.6 (3.1 to 13.4)	Fron	30 -	
Time to CR, months, median (range)	3.7 (1.7-7.2)	4.6 (1.7-7.2)	3.1 (1.9-4.0)	ıge	10 - -10 -	
Duration of OR, months, median (95% CI)	9.8 (8.8 to 12.9)	9.8 (8.5 to 18.5)	9.2 (5.0 to 12.2)	Char	-30 -	
Time to OR, months, median (range)	1.9 (0.7-10.9)	1.9 (0.7-5.5)	1.9 (1.8-10.3)	est (-50 - -70 -	
mCR with HI/Any HI, %	16.8/58.9	19.7/60.7	12.0/56.0	B	-90 -	
Converted to RBC transfusion independence, % ^c	35.1	26.1	46.2		-110 -	
PFS, months, median (95% Cl)	11.6 (9.0 to 14.0)	11.8 (8.8 to 16.6)	11.0 (6.3 to 12.8)			
OS, months, median (95% CI)	NR (16.3 to NR)	NR (21.3 to NR)	16.3 (10.8 to NR)			

Median OS in *TP53*-Wild Type and Mutant HR-MDS Patients

- With a median follow-up of 17.1 months, median OS was not reached and was 16.3 months in TP53-mut MDS.

Stem Cell Transplant Outcomes Are Encouraging in HR-MDS Patients Treated with Magrolimab + AZA

Time (months)

No. at risk:

Allo-HSCT	34 34	34	34	32	31	31	30	29	24	15	13	13	6	5	2	2	2	1	0
No allo-HSCT	61 56	52	48	44	42	35	28	23	20	12	7	6	3	2	2	2	1	1	0

Kaplan–Meier Survival Estimates

All Patients	SCT (N = 35)	No SCT (N = 60)
Median follow-up, months	19.6	12.9
Median OS (95% CI)	NR (NR, NR)	14.8 (11.9, 21.3)
1-year OS, % (95% CI)	91.4 (75.7, 97.2)	64.0 (49.9, 75.1)
2-year OS, % (95% CI)	77.3 (57.3, 88.8)	33.9 (20.0, 48.3)

Sallman D et al., EHA 2022; Sallman D et al., JCO. 2023

MRD- 15

MRD+ 45

 31 29 23 17 14 12

Sallman D et al., JCO. 2023

ENHANCE Randomized Phase 3 MDS Study

Figure 4.

Study 5F9009 Schematic

Magrolimab (or saline placebo) dosing:

Cycle 1:

Priming (1 mg/kg) on Days 1 and 4 15 mg/kg on Day 8 30 mg/kg Days 11, 15, 22 Cycle 2: 30 mg/kg Days 1, 8, 15, 22 Cycle 3 and onward: 30 mg/kg Q2W

Azacitidine dosing:

 75 mg/m^2 IV or SC Days 1-7 (or Days 1-5 and 8-9) every cycle

Cycles are 28 days long

ENHANCE Closed for Futility; Data to be presented at an upcoming meeting

Magrolimab in Combination with AZA Demonstrated Encouraging Response Rates in *TP53*-mut AML

Outcome	TP53-Mutant (n = 72)	<i>TP53</i> Wild-Type (n = 15)	All Patients (ITT; N = 87)
ORR," % (95% CI)	47.2 (35.3 to 59.3)	46.7 (21.3 to 73.4)	47.1 (36.3 to 58.1)
CR, % (95% CI)	31.9 (21.4 to 44.0)	33.3 (11.8 to 61.6)	32.2 (22.6 to 43.1)
MRD-CR ^b	n = 12/23	n = 4/5	n = 16/28
% (95% CI)	52.2 (30.6 to 73.2)	80.0 (28.4 to 99.5)	57.1 (37.2 to 75.5)
CRh, No. (%)	1 (1.4)	0	1 (1.1)
CRi, No. (%)	5 (6.9)	0	5 (5.7)
CR or CRh, No. (%)	24 (33.3)	5 (33.3)	29 (33.3)
CR or CRi or CRh, No. (%)	29 (40.3)	5 (33.3)	34 (39.1)
PR, No. (%)	4 (5.6)	1 (6.7)	5 (5.7)
MLFS, No. (%)	1 (1.4)	1 (6.7)	2 (2.3)
SD, No. (%)	13 (18.1)	5 (33.3)	18 (20.7)
DOR, months, median (95% CI)	7.7 (6.5 to 10.1)	18.7 (5.7 to NR)	8.7 (7.4 to 10.9)
DCR, months, median (95% CI)	7.6 (4.7 to 9.7)	31.3 (18.7 to 31.3)	9.6 (5.1 to 10.9)
Duration of CR/CRi, months, median (95% CI)	7.7 (5.3 to 10.4)	31.3 (18.7 to 31.3)	9.6 (7.5 to 11.5)
EFS, months, median (95% CI)	3.7 (2.0 to 9.2)	2.9 (0.0 to 20.4)	3.7 (2.1 to 7.3)
OS, months, median (95% CI)	9.8 (6.8 to 12.3)	18.9 (4.3 to NR)	10.8 (7.2 to 12.8)
Received allo-HSCT, No. (%)	8 (11.1)	2 (13.3)	10 (11.5)

Overall Survival in AML

Triplet Azacitidine + Venetoclax + Magrolimab

Parameters		Full Frontline
		N=43
Overall response	CR	21 (49)
	CRI	10 (23)
	CR + CRI	31 (72)
	MLFS	4 (9)
MRD-ve best responses [#]	FCM-CR/CRi	16/28 (67)#
Cytogenetic responses*	CCyR	11/21 (52)*
Time to response	First response	23 [19-105]
(days)	Best response	51 [20-130]
Counts recovery	ANC ≥ 500/cu mm	36 [16-88]
(days)	Platelet ≥ 100 x 10 ⁹ /L	32 [0-74]
Cycles on therapy		3 [1-17]
Mortality:		
- 4 week		0 (0)
- 8 week		0 (O)
# Amongst CR/CRi patient	s with longitudinally MRD evaluab	le samples * Amo

Adjusted HR for AVM arm for death= 0.41, 95% CI=0.18-0.88

Comparison of overall survival (unmatched groups)

Ongoing Phase 3 Studies with Magro in FL AML

Phase III AZA+Magro vs Investigator Choice in TP53 AML (ENHANCE-2)

Phase III AZA+VEN+Magro vs AZA+VEN in older/unfit AML (ENHANCE-3)

ENHANCE-3: Phase 3 study of 1L unfit All Comer AML with magrolimab +venetoclax+ azacitidine

Stratification:

- 1) Appropriateness for non-intensive therapy vs. intensive therapy
- 2) Age <75 vs. ≥75
- 3) Geographic region: US vs. outside the US

Endpoints:

- Primary endpoint: OS in TP53 mut AML population appropriate for non-intensive treatment
- First secondary endpoint (alpha controlled): OS in all TP53 mutAML population
- **Other key secondary endpoints (alpha controlled):** EFS, Transfusion independence, CR/CR_{MRD}., PRO in all TP53 mut AML population

Endpoints:

Primary endpoint: CR, Overall survival

Secondary endpoints: 1. MRD-ve CR 2.CR+CRh, 3. Duration of CR, 4. Duration of CR+CRh 5. Transfusion independence 6. EFS 6. QOL/PRO

Unfortunately ENHANCE 2 Trial Closed for Futility 9/2023

On Target Anemia and Mitigation Strategies

- Aged RBCs express pro-eat me signals whereas young RBCs do not leading to clearance of senescent RBCs
- Anemia Mitigation via:
 - Priming strategy (e.g. magrolimab)
 - RBC pruning process of CD47
 - Decrease/eliminate RBC affinity (majority of agents other than magrolimab)
 - Novel platforms (prodrug or tumor targeted nanoparticles)

TTI-621 and TTI-622

 TTI-622 (maplirpacept) is a SIRPα-IgG4 Fc and has several concepts evaluating in hematologic malignancies (unclear if ongoing development in MDS/AML)

Evorpacept (ALX148) – ASPEN-02 Study

	Previously Untreated HR-MDS (N=6)	Previously Untreated HR-MDS with TP53 Mutation (N=5)	Relapsed/Refractory MDS (N=9)*
ORR	3 (50%)	3 (60%)	5 (56%)*
CR	2 (33%)	2 (40%)	0
PR	0	0	0
Marrow CR	1 (17%) with HI	. 1(20%) with Hl	5 (56%)*
HI	0	0	0
SD	2 (33%)	1 (20%)	2 (22%)
PD	1 (17%)	1 (20%)	1 (11%)

ASPEN-05 Triplet Study with ven + aza without data reported to date; no current MDS/AML trials accruing

Data Cutoff 25Oct2021; Response evaluable population (n=15); *Includes 3 unconfirmed responses; *I subject had G5 event unrelated to treatment prior to first disease assessment; ORR – Objective response rate; CR – Complete response;

Lemzoparlimab in MDS (IgG4 mab against CD47)

BOR (%)	Time Since First Dose (ES N=47)						
(70)	≥ 3m (N=36)	≥ 4m (N=29)	≥ 6m (N=15)				
ORR	80.6	86.2	86.7				
CR (95% CI)	27.8 (14.2, 45.2)	31.0 (15.3, 50.8)	40.0 (16.3, 67.7)				
mCR with HI	13.9	17.2	13.3				
mCR	30.6	27.6	20.0				
HI	8.3	10.3	13.3				
SD	16.7	10.3	13.3				
PD	2.8	3.4	0				

BOR: Best of response; ORR: overall response rate; <u>mCR</u>: marrow complete remission; HI: hematologic improvement; SD: stable disease; PD: disease progression ES (Evaluable analysis set): Defined as subjects with at least one post-baseline tumor assessment

Data cutoff: date: March 31st, 2022

- CRR increased over time on therapy
- 31% and 40% CR rates achieved in subjects with time since first dose ≥ 4 months and ≥ 6 months, respectively

AK117 (Ligafulimab) does not induce Hemaglutination

Less anemia in early clinical trials (29% in MDS pts, no large drops) with no priming dose

Journal for ImmunoTherapy of Cancer 2022;10:e005517.

AK117 Efficacy in MDS (data cutoff 25-Aug-2023)

	Magro +AZA ^[1] (N=95)	Lemzo +AZA ^[2] (N=53)	AK117 +AZA (N=27)	IBI188 +AZA ^[3] (N=45)	AZA
ORR	74.7%	70.2%	85.2%	/	~50%
CRR	32.6%	21.3%	48.1%	/	10-20%
CRR (Treatment ≥3 cycles)	/	27.8%	52.0%	/	/
CRR (Treatment ≥6 cycles)	/	40.0%	68.4%	31.1%	/

Evaluated Patients

Similar data in AML (50% CR, 5% CRi)

Poster # 7017. ASCO. 2022.
Abstract # 6170. ESMO. 2022.
Abstract # 1759. ASH. 2022.

Phase 1 Study of SL-172154 in MDS and TP53 Mutant AML

- SL-172154 (SIRPα-Fc-CD40L), a hexameric, bi-functional fusion protein, consists of SIRPα domains linked to CD40L domains through an inert Fc linker
- CD40 Activation can increase antigen processing and cross-presentation by antigen presenting cells (APCs) to CD8 T cells, thus bridging innate and adaptive immunity

Phase 1 Study of SL-172154 in MDS and TP53 Mutant AML

- 2/4 evaluate TP53 mutant HR-MDS responded (CR and mCR)
- No objective response was reported in pts with R/R AML.
- BM Blast reduction 5/7 pts at 3 mg/kg cohort (ranging from -35% to -90%).
- SL-172154 increased on-target innate and adaptive serum cytokine levels of IL-12p40, IP-10, IL-8, IL-10, MIP3α and MCP1 at 3.0 mg/kg
- SL172154 monotherapy was associated with increase of the frequencies of phagocytic cells (such as CD45highCD34-CD11b+HLA-DR+ and CD45highCD34-CD36+CD64+) in bone marrow of patients with reduction in leukemic blasts.
- The magnitude of increase was higher in SL-172154 plus AZA cohort compared to SL-172154 monotherapy cohort.

B: SL-172154 + AZA

Acknowledgements

Moffitt Cancer Center

Rami KomrokjiNajla AliEric PadronLing ZhangJeffrey LancetQianxing MoAmy McLemoreAndrew KuykendallLisa NardelliZhueor XieSeongsuk YunImage: Second State State

MDACC Navel Daver Guillermo Garcia-Manero

Emory

Anthony Hunter

GFM Thomas Cluzeau Pierre Fenaux

Wash U Meagan Jacoby

Collaborators across ENHANCE Studies

AA&MDSIF • MDS CLINICAL RESEARCH CONSORTIUM

Supported by the Edward P. Evans Foundation

the myelodysplastic syndromes foundation, inc

A Contraction